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The functional integrals appearing in master equations for turbulent  flow 
of an incompressible fluid and for the Burgers model equation are treated. 
A possible way is described to define the integration properly and related 
problems are discussed. For  the simple example of the Burgers model 
equation of turbulence some results are presented. 
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1. INTRODUCTION 

T h e  t h e o r e t i c a l  t r e a t m e n t  o f  t u r b u l e n c e  h a s  p a i d  m u c h  a t t e n t i o n  so f a r  to  

p e r t u r b a t i o n  m e t h o d s  a b o u t  l a m i n a r  f low, (1~ t u r b u l e n t  f low, (2~ a n d  G a u s s i a n  

r a n d o m  p r o c e s s e s  (8~ b y  u s i n g  t h e  m o m e n t  f o r m u l a t i o n ,  a n d  fo r  t h e  d i s t r i b u -  

t i o n  f u n c t i o n  f o r m a l i s m  th i s  a l so  h a s  b e e n  d o n e  a b o u t  t h e  s a m e  s t a t e s  f o r  
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laminar flow, (5) turbulent flow, (6> Gaussian random processes. (6> Lee (7) gives 
an excellent survey and introduces the general kinetic equation well known 
from nonequilibrium statistical mechanics. This kinetic equation is closely 
related to Zwanzig's master equation. ( ~  Its derivation involves diagrammatic 
techniques developed by the Brussels school, (a~ whereas Zwanzig uses 
projection operators. In this paper the explicit calculation of functional 
integrals appearing in master equations for turbulent flow and especially for 
the Burgers model for large Reynolds numbers is investigated. Conditions 
for the proper definition of this integration process are considered and for the 
Burgers model some integrals are explicitly calculated. 

2, BASIC  E Q U A T I O N S  

The general formulation of the turbulence problem for incompressible 
Newtonian fluids leads to Hopf's equation ~9> for the characteristic functional 
0[~o~( .)] of the probability measure, 

~ O f R [ O  820 8 0 ]  
0-7 = c~(~) i 0~:~ 8~(1"~) 3q~(~) d~: d~: + vat 8~0~(1-~) d-~: d~: (I) 

R denotes the domain of the ~o, with sufficiently smooth boundary 0R and 
~ is the solenoidal part of ~%. The alternative is the (generalized) Liouville 
equation for the probability density functional F 

OF f• 8 8--7" + d~ ~0~(~:)-----~ [Q~(~0e)-F[~(.), t]l = 0 (2) 

where 8/8cp~(~)df denotes the Frechet derivative and Ocp~/Ot = Q~(q~e) is 
the rate of change of the argument q~ of F. These two equations are equivalent, 
as was shown by Keller. (~~ The probability functional F is defined on the phase 
space f2 of  all possible realizations of the fluctuating flow field. We are now 
interested in the application of an idea by Zwanzig, ~1~ who used projection 
operators to obtain equations for the probability density of the values of 
rather arbitrary functionals (scalar- or vector-valued) defined on the phase 
space f2. Thus the closure problem for pdf 's  can be avoided under certain 
initial conditions imposed on F. Start from (2) written in the form 

OF/St = i~F (3) 

where s denotes the Liouville operator 

i ~ o  = d~ ?~o~(~:) a~: [Q"(q~) o] (4) 

The domain of definition of i~ ~a is the class of functionals which are defined 
on f2 and are weakly differentiable. We note that is is a linear operator. For 
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the choice of the phase function A[~o~(.)] we suggest 

A[~( . ) ]  = ~(Xo) (5) 

Since in this form A is not regular, we consider the fundamental sequence 

An[q~u(.)] = ~ f ? ,  X~(~)q~(~), V~ --+0 as n --+ oo 

where X, is the characteristic function of V, centered around xo. The A, are 
now regular functionals. In the limit n ~ 0% A, therefore gives the velocity 
at a chosen point xo E R. Following Ref. 11, we can derive an equation for 
the values u~ of A by introducing the projection operator 

1 t 
p~o - w(;%]'/~-,~t )3 t~(d~') 3(A[q~'] - A[9~])o (6) 

where 
/ .  

W(A[q~]) --- Jr/x(dq~') 3(A[rA] - A[~o~]) (7) 

Definition (6) includes the choice of a proper measure t~ on (fl, 2) ,  where 
is the Borel ~-algebra of subsets of f~. The construction of/~ and related 
problems will be discussed below. The result of Zwanzig's derivation can be 
stated in the form of a linear integrodifferential equation for the pdf g(u~, t). 
First F[q~(.), t] is split into orthogonaI parts 

F = P~F + ( I - -  PA)F 

and we write f~ = PAF and f2 = (I  - PA)F. Then the pdf g(u~, t) is related 
to f~ by 

g(u~, t) = f~ ~ (+)  ~(A[~] - u~)F[~(.), t] (8) 

Furthermore, we define the averaging procedure with respect to the measure 
t~ under the condition that A[q~(.)] assumes a given value u~ as 

1 " 
(a[~%(.)], u~) --- W~-u~) j a t~(dg) 3(A[9~1 - u~)a[9~] (9) 

where G is any regular functional. According to Ref. 11, the equation for 
g(u~, t) can finally be given in the form 

i ag 
W(u~) et 

= (~~ u~) + (=~q.e{exp[-t(I- Pa)iLP]}f2(~%, 0); u~) 

fo - i ds ( i~{exp[  - s(I  - PA)i~]}(I - eA)i~f~ ( ~ ,  t - s); u~) (10) 
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Note that for f219~, 0] = 0 this is a closed and exact equation for f119~ t], 
because g and./1 are related by 

),,1-- 

The condition f219,, 0] = 0 means that initially F[9~, 0] =f~[9 , ,  0] or in 
physical terms, for the phase functional chosen here, at t = 0.0 the fluctua- 
tions are restricted to the volume V,. For the example of the Burgers model 
equation we shall give later a more refined version of (10). The change in 
time of a point 9~ in g~ is determined by the Navier-Stokes equations and the 
continuity equation for the case of turbulence. For the Burgers model this 
equation is given by 

~9 0 9 1 829 (1 la) 
8-~ = - ~  ~ + R---~ 0x - -~  

where 9(x) is defined on the x interval [ - T ,  T], T > 0, and is subjected to 
the boundary conditions 

9(T) = 9 ( - T )  = 0 

3. THE STRUCTURE OF THE PHASE SPACE 

Consider first the properties of a possible realization of the fluctuating 
flow field 9~(x). The function 9~(x) must be twice differentiable 

02 
8x B Ox~ 9~(x) ~ L~2; x ~ R 

and it must satisfy the boundary conditions 

9~(x) = O; x ~ 8R 
or in the case of homogeneous turbulence this is replaced by the condition 
of finite norm and finally the continuity equation 

8 
~x~ 9~(x) -- O; x e R 

must be fulfilled. From these properties it follows that ~ must be a linear 
subspace of the special Sobolev space 

W~2~(R) = 9~(x): OxB ax~ 9~ e LR 2, 9~(x) = 0 Vx e OR 

with the norm 

']9~" = { , ~ f  d~ DZ9~'D~9~} 
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where 

Dr" ~- ~x[~ Ox~ ~ ?x~ a' l = l~ + 12 + la 

In this special case W~2~(R) is a separable Hilbert space (z2~ with scalar product 
given by 

(9~,~, ~b~) = ~o~R d~ D~q~. (12) 

Then by (12) the structure of ~ as a subspace of W(22~(r) is uniquely deter- 
mined. Since W(22~(r) is a separable Hilbert space, there exists an ortho- 
normalized basis {e~}y= ~ in W(22~(R). Consequently, we can construct a basis 
{f~} using a continuous linear mapping (I): W(2~(R) ~ ~. The basis turns out 
to be very useful in constructing a Gaussian measure/~ over W2(~(/~) and ~), 
respectively. 

For the Burgers model the phase space has a much simpler structure. 
It is defined by 

= ~(x) :  ~ ~ r ~ ,  ~ (T)  = ~o( - I " )  = 0 

and we note that f2 = W ~ [ - T ,  T]. 

4. I N T E G R A T I O N  OF F U N C T I O N A L S  OVER 

Consider a measure tz on (W~2~(R), ~), where ~ is the Borel algebra and 
a sequence of projections {Pn} of W~2~(R) into finite-dimensional subspaces 
Ln(R) c W~2~(R) with the property 

lira P,~W~Z~(R) = W~2~(R) 

The measure/z generates on each Ln the measures 

Analogously, P ,  creates cylinder functionals on L,  by F , (q~)=  F(P,q~), 
where F is a functional defined on W(z2~(R). These measures are compatible 
(Ref. 13, w It would be very easy now to construct a measure t* on (W~2~(_R), ~ )  
if to each compatible sequence {t*,} of finite-dimensional distributions there 
corresponded a measure/z as n,--> or. But this is not the case and the sequence 
{/z,} has to satisfy an additional condition stated in Lemma 1 of Ref. 13, w 
in terms of t*,~ or in the Minlos-Sazonow theorem (Ref. 13, w in terms of the 
characteristic functional O(z~) generated by the sequence {~}. But the situa- 
tion is not hopeless because we can define integration with respect to weak 
distributions that do not generate measures (see Ref. 13, w though we 
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possibly sacrifice cr-addivity of the integral. Therefore we consider both 
options: integration with respect to a weak distribution and integration with 
respect to a measure. The reason for this is the fact that in certain cases the 
calculations for weak distributions are easier than for measures. 

Now consider the special spaces in this context. To construct a measure 
on (~2 ~ )  we proceed as follows. First we establish a linear mapping �9 of 
W~2~(R) onto ~2. A possible choice of  �9 for the case R = R 3 (no boundaries) 
is defined as 

~o~(x) = ~r  vr e W ~ ( R )  

I f  | fR [ k~kB] O ~ ( x )  = ~ -~o dk dy {exp[ik.(x - y)]}c~(y) 3~ - k2 ] 

for all ~ e W~2)(R). A simple calculation shows that from ~ e f~ it follows 
that q )~  = ~ and that ep~/Ox~ = 0 is indeed satisfied and therefore 
op W~)(R) = ~. In the case of  a compact  R with a smooth boundary ~R and 
homogeneous boundary conditions we can resort to the linear mapping O' of 
W~R onto f~ defined by 

~ ( x )  = o ' e r ( x )  = v x ~ 
qS.(x) ~ W(~S~(R) = {~.(x): Dac~ ~ L~ ~, V x c~ = 0 V~ e ~R} 

Then 

The condition 8~/8x~ = 0 is obviously satisfied and for ~% e f~ there exists 
c~ ~ W2(a)(R) with 9~ = qb'~ by means of Biot-Savart 's  well-known formula 
and therefore q)'W~(a)(R) = ~. 

The second step is the definition of a measure ~ on (W2Z(R), ~), l = 2, 3. 
We shall restrict ourselves to Gaussian measures ~ with zero mean for reasons 
discussed later. Then /z is uniquely defined (see Ref. 13, w by a nuclear 
operator B=e and consequently the characteristic functional O(z~) of ~ has 
the form 

O(z~) -- exp{-�89 zB)}, z. ~ W~ z~ (R) 

B~ nuclear means that B~e is symmetric, nonnegative, and has finite trace. 
The construction of B~ B can be done by making use of the orthogonal and 
normalized basis tfe a~sk=l in W~)(R). We define a class of operators B~  by 

B~  = 3~B~. (no sum over c 0 

and the eigenvalues {1k} and eigenvectors {fk} of Be. I f  we restrict the 
eigenvalues to 

2 ; ~ k  < ~ ,  cr = 1, 2, 3 
k = 3 .  
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and A, ~ > 0, k = 1, 2,..., c~ = 1, 2, 3, and furthermore use the basis {C}~~ 
as the corresponding set of eigenvectors, then it follows easily that 

(B~ W~, ze) = (W,~, B~z~) symmetry 

(B~z~, zB) >1 0 nonnegativity 

and 

/;=1 k:=1~=1 

as an easy calculation shows. 
The final step is the construction of the measure ff~ on (~, ~). To 

accomplish this we use the mapping d~ or ~D' constructed in the first step and 

define k~a by 

~ ( c )  = ~ ( r  c ~  

But in order to get an explicit expression for the density, (dff/d/z~)(cp~), 
according to Theorem 4 of Ref. 13, w has to be invertible, which is not the 
case. Therefore we map the basis {ek}~~ 1 of W~Z)(R) into f2 and construct ffa 
directly by defining the nuclear operator B~ B in f2 using {r orthonormalized 
if necessary. 

For the integration with respect to a weak distribution generated by the 
sequence {ft,} of finite-dimensional distributions 

n 

tz~(dq~) = exp{-�89 P,~o=)}]~= 1 .: ~7  4 ,  (13) 

we can employ the same procedure as described above to define the integral 
over fL For the Burgers model we note a special simplification. We denote 
by 

[% r = f~ ds e D~Z)q) �9 D(Z)~ (14) 

the scalar product [% r for l = 2. Then we can replace (., .) in (13) by 
[ . , . ]  and get a new sequence {ff~} defining an integral (after appropriate 
normalization of the densities fin) more accessible to calculation. 

Some remarks about the integration seem to be necessary at this point. 
Since the choice of ff in (6) is by no means unique, the solution of (10) will 
in general depend on tz. In order to make (6) a useful tool, we should satisfy 
the following condition on ft. The unknown probability measure F and ff 
must have the same mean for all times because in infinite-dimensional 
Hilbert spaces translationally invariant measures do not exist (see Ref. 13, 
w Therefore we have to introduce fluctuating fields with zero mean in the 
basic equations (1) and (2). Equation (8) tells us furthermore thaf the solution 
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of (2) should be absolutely continuous with respect to/z. But this is an open 
question so far. In this context the Gaussian measure ~ is a reasonable choice 
because according to Theorem 1, w in Ref. 13, there exists a large class of 
nonlinear transforms v of a Gaussian measure/z that are equivalent to p. 

5. THE BURGERS M O D E L  

The phase space f2 allows in this example the construction of a 1-1 
mapping �9 of  LR 2 onto fl by 

f s0(x) - ~ y  = d~ K(~, x)y(~) ,  y ~ LR 2 (15) 
- T  

where 

1 T x~' (16) 
K(~, x) = ~ I~ - xl - ~ + 2-~ 

The projections P .  of ~ onto the finite-dimensional subspace ~ .  of n-step 
functions are given by 

/ ' .so = (sO,}L1 
where 

1 ~ "  d~so(~), { ~ : o = - T ,  *I,...,~,~=T} 
so' = I f , -  r _ 

is a division of R into n subintervals of positive length and 

max1 ~ ~. [ ~:~ - $~ -1 ] -+ 0 as n -+ 00. 

Using (13) with (14) for l = 2, we get 

t~.(dso) = C. exp{-�89 P.sO]} 1-~ dso~ 
i = l  

which defines a weak distribution as n - +  oe. Since we need only ratios of 
integrals over fl, the normalization constant C. is not necessary and we can 
express/x.(dso) and A [sO(,)] and B[sO(. )] in terms of sO = q)y and write 

fa p(aso) F(A[sO], B[sO]) = c f._z a t~(dy) F(A[y], B[y]) 

The constant C does not depend on y because q~ is linear and we do not need 
C for the same reasons as C.. Finally tx~(dy) is, by (14), 

t~.(dy) = C. e x p ( -  �89 P.y)} ~-I dy~ 
"i,= l 
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The sequence {A,}g'= 1 of  phase functions defining A in (5) is 

-~- El I x-lln ~T 
A"[q~ 2 ~ x + ~/, d~ qo(~) = -T d~ a(~, x)y(~) 

where 

an(s x)  x6  T (�89 x - ~1, ] x -  6] > 1/n 
= 2 - T -  Y + ( l / 4 n  + 1/4n(x - 6) 2, Ix - 6[ <~ 1/n 

The Liouville opera to r  iLr is used in the fo rm 

fR a (17) ix ' .  = ds~ Q(q~(se)) 8~(~:) d~: 

which is valid only for  Re ---, oo. The Q(go) are given by 

where 

8~o 1 8~q~ Off &p 
q' = Q(q~) = -q~Fxx + Re 8x 2 ~o ~--~ - u ~ x  + f ( u )  (18) 

f(ff)  = -8"7 - u~xx + R---e 0x ---~ (19) 

as a consequence of  the splitting of  the variable v satisfying (1 la) into 

~(x, t) = ~(x, t) + ~(x, t) 

The set o f  equat ions to be solved s imultaneously is then 

~ 1 a~ 2 1 &p2 1 ~2ff 
+ - -  - -  (20) 

at 2 8x 2 8x Re 8x 2 

and Eq. (10) or (11), respectively, for  g(u, t) at each x E R. By definition it 
follows that  

q~2(x, t) = d F  Ivy(.), t]~o2(x) 

and  f rom (5) it follows that  for  x fixed, q~(x) can be identified with u or u', 
respectively. We have 

~ ( x ,  t) = u ~ = du g(u, x,  t )u  2 
o o  

Since g depends on x, the derivatives of  u 2 with respect to x exist and do not  
vanish identically. Fu r the rmore  (10) can be writ ten in the fo rm 

+ W.v.-~u = ds du, g ( u ,  t - , W ( u ' )  u ,  s) (21) 
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for initial conditions f2 = 0. The coefficients are defined by (7) and 

v(u, x) = [t/W(u)] fa F(dcp) 8(A [q~] - u ) i ~ A  [cp] (22) 

/~(u, u', s) = fn/x(dp) 8(A - u)i.Y~e-'(z-eA)~'~(I -- P,Oi.E ~ 8(A - u') (23) 

5.1. Calculation of the Structure Function W(u) 

To perform the calculation we make use of Ref. 14, from which it  
immediately follows that (Fig. 1) 

1 -2 -2  W(u, x) = (2rrX)112 exp 

X =  lim X., X.  = X(A.) 

X.(x)  = f~ d~ a.2(~, x) = (1 /6T)(T  -2 - x2) 2 + O(1/n) 

and 

(24) 

(25) 

5.2. Calculation of the "Convec t i ve"  Term v(u, x) 

First we apply i ~  on A~ and get 

[,x + lln j T_ 
i~A.[q~(.)] = �89 [ d~ Q(~) =- d~ sx(~)Q(~) 

V x-lln 7" 

Inserting expression (18) into the integral and using the representation (15), 
we get after some lengthy calculations, according to Ref. 14, 

v(u, x) = Vo(X) + f ( ~ )  + u[(1/Re)vl(x) + v2(x)~(x) 
-�89 + 2u~v2(x) (26) 

Wlu.xl) t W(u.x2 ) W[u.T} 
I 
1 

I00 O0 O0 O0 x 
x 1 x 2 T 

F ig .  I .  S t ruc tu re  f unc t i on  W(u, x) near  f i xed  b o u n d a r y  (Burgers  equa t ion ) .  
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where 

vo(x) = (x/3T)(x 2 - ~T 2) + O(l/n) 
vl(x) = - [ 3 / ( T  2 - x2)] + O(1/n) 
v ~ ( x )  = [ x / ( T  ~ - xD] + O ( 1 / n )  

andf (~ )  is given by (19) (Fig. 2). 

(27) 

5.3. Calculat ion of  the  " K e r n e l "  Funct ion 

So far it has proven impossible to derive the result of the integration in 
(23) in closed form. The only way out is to calculate the terms in the (time) 
series expansion of the exponential operator e x p { - s ( I  - PA)i~q~}, which is 
extremely tedious and unsatisfactory because for the integration over fl with 
respect to a weak distribution we have to prove in addition to convergence 
that integral and convergent series may be interchanged. But we can show at 
least that K is-not identically zero by applying the projection operator PA 
to iSfA,~. It  is sufficient to consider the linear part  of  i~A~ given by 

B.[y(.)] = f~ d( s~(~)y(~) 

Then 

PABn = 

and from Ref. 14 it follows that 

Y. 
PAB,~ = ~ A,[y], 

W(.d,[y]) Ja/z(dy') 8(A.[y'] - A,~[y])B,[y'] 

2X, = T ~ - x 2 + O 

Fig. 2. "Convective" coefficients (Burgers 
equation). 

J 
j=0 

j=l  
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and therefore 

( / -  PA)~[yl  = ~ [ y ]  + r~ x-----~ .4~[yl + o 

which is obviously not identically zero. Therefore the zeroth-order term of/~ 
is not identically zero and this implies that /~ ~ 0 almost everywhere in R. 

6. C O N C L U S I O N S  

For the application of projection operator methods to turbulence the 
necessary tool of functional integration has been described and for the 
example of the Burgers model equation some integrals have been explicitly 
calculated. The proper construction of the integration process over the phase 
space ~ encounters some unexpected difficulties because of the nonexistence 
of translational-invariant integrals and because of the possibility that to a 
sequence of compatible finite-dimensional distributions there does not corre- 
spond a measure unless an additional condition (13~ is satisfied by the sequence. 
The result of the formalism described above is a system of integrodifferential 
equations consisting of (a) equations for mean quantities containing second- 
order moments of the fluctuating component with spatial coordinates x and 
time t as independent variables; these equations are nonclosed in the classical 
sense; and (b) equations for the pdf of the values of an appropriately chosen 
phase function; here the fluctuating component at a point x is the independent 
variable; the coefficients (and therefore the solution) depend on the spatial 
coordinates x parametrically; this equation has to be solved at each x E R 
theoretically. The connection between (a) and (b) is established by the 
definition of moments. 

To illustrate the integration procedure the structure function W(u) and 
the "convective" term v(u, x) in the so-called master equation derived in 
Ref. 11 were calculated. The domain of all realizations was assumed to be a 
bounded interval with homogeneous boundary conditions for ~o E ~. The 
special form of the master equation (21) in this example suggests that for 
t ~ ~ and points x approaching the boundary from inside, the function 
W(u, x) plays the role of an asymptotic solution. The result (24) for W(u) 
shows that this is indeed the case because for Ix[ ~ T the function W(u) --+ 
8(u), as it should because we prescribed homogeneous and therefore deter- 
ministic boundary conditions. The results for v(u) in (26) and (27) show some 
interesting features. The constant part (with respect to u) v0 + f(~) is uni- 
formly bounded in R, whereas Iv1] and Iv21 go to infinity as x approaches 
either boundary. The origin of terms linear in u is easy to detect from (18) 
and the quadratic term in u and v0 come from from the "inert ial"  term 
~(~/~x) in (18). 
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Finally the time correlation function, which has actually the character 
of a complicated differential operator, proved to be a stumbling block, but 
calculations based on series expansion in time and a Gaussian measure are 
under way for the Burgers model and shall be presented in a subsequent 
paper. 
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